Forecast sensitivity to the observation error covariance in variational data assimilation

نویسنده

  • Dacian N. Daescu
چکیده

The development of the adjoint of the forecast model and of the adjoint of the data assimilation system (adjointDAS) make feasible the evaluation of the derivative-based forecast sensitivity to DAS input parameters in numerical weather prediction (NWP). The adjoint estimation of the forecast sensitivity to the observation error covariance in the DAS is considered as a practical approach to provide all-at-once first order estimates to the forecast impact as a result of variations in the specification of the observation error statistics and guidance for tuning of error covariance parameters. The proposed methodology extends the capabilities of the adjoint modeling tools currently in place at major NWP centers for observation sensitivity and observation impact analysis. Illustrative numerical results are presented with the fifth-generation NASA Goddard Earth Observing System (GEOS-5) atmospheric DAS and its adjoint.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Sensitivity Equations of Four-Dimensional Variational (4D-Var) Data Assimilation

The equations of the forecast sensitivity to observations and to the background estimate in a fourdimensional variational data assimilation system (4D-Var DAS) are derived from the first-order optimality condition in unconstrained minimization. Estimation of the impact of uncertainties in the specification of the error statistics is considered by evaluating the sensitivity to the observation an...

متن کامل

A penalized four-dimensional variational data assimilation method for reducing forecast error related to adaptive observations

Four-dimensional variational (4D-Var) data assimilation method is used to find the optimal initial conditions by minimizing a cost function in which background information and observations are provided as the input of the cost function. The optimized initial conditions based on background error covariance matrix and observations improve the forecast. The targeted observations determined by usin...

متن کامل

Sensitivity Analysis in Nonlinear Variational Data Assimilation: Theoretical Aspects and Applications

This chapter presents the mathematical framework to evaluate the sensitivity of a model forecast aspect to the input parameters of a nonlinear four-dimensional variational data assimilation system (4D-Var DAS): observations, prior state (background) estimate, and the error covariance specification. A fundamental relationship is established between the forecast sensitivity with respect to the in...

متن کامل

Reduced-order Observation Sensitivity in 4d-var Data Assimilation

Observation sensitivity techniques have been initially developed in the context of 3D-Var data assimilation for applications to targeted observations (Baker and Daley 2000, Doerenbecher and Bergot 2001). Adjoint-based methods are currently implemented in NWP to monitor the observation impact on analysis and short-range forecasts (Fourrié et al. 2002, Langland and Baker 2004, Zhu and Gelaro 2008...

متن کامل

A Penalized 4-D Var data assimilation method for reducing forecast error

Four dimensional variational (4D-Var) Data Assimilation (DA) method is used to find the optimal initial conditions by minimizing cost function in which background information and observations are provided as the input of the cost function. The corrected initial condition based on background error covariance matrix and observations improve the forecast. The targeted observations determined by us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010